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Interaction potentials and free energies for ferroelectric liquid crystals 
in the model of polar non-uniaxial molecules 

by K. SZUMILIN* and J. J. MILCZAREKT 
Institute of Physics, Warsaw Technical University, Koszykowa 75, 

00-662 Warsaw, Poland 
TInstitute of Atomic Energy, Swierk, 05-400 Otwock, Poland 

The possible forms of the model interaction potentials are proposed for rigid 
polar non-uniaxial molecules with the molecular dipole moment making an arbi- 
trary angle with the molecule’s long axis. The molecule orientation is described by 
the direction of two molecular axes: its dipole moment and the long axis. The 
intermolecular potentials dependent on both molecular axes orientations are 
considered. The simple model interaction potentials between chiral molecules are 
used. It is shown that the form of the interaction potential determines the set of 
the relevant order parameters of the system. The free energy is calculated in the 
Landau expansion form in terms of the relevant order parameters. 

1. Introduction 
There is experimental evidence that ferroelectric liquid crystals are composed of 

mesogenic chiral molecules possessing a permanent electric dipole moment perpen- 
dicular to their long axes [l-31. However, polar orderings are also observed in systems 
of uniaxial polar molecules [4]. Those facts necessitate the development of molecular 
models within which they can be described and explained. Another problem lies in the 
definition of the order parameters for systems described by the postulated interaction 
potential. In most molecular theoretical approaches [5-81 the order parameters are 
chosen on the basis of phenomenological considerations which lead to the conclusion 
that ferroelectric liquid crystals belong to the class of improper ferroelectrics [9,10]. 
In this case the polarization vector is a secondary order parameter coupled to some 
primary one describing the tilt. This coupling makes the temperature behaviour of the 
polarization similar to that of the true order parameter. In this paper we formulate 
the theoretical approach which allows us to work out these problems in a more 
systematic way. We start from the postulated interaction potentials to show how its 
symmetry influences the definitions of the relevant order parameters. The method of 
calculation is based on the previously developed theory [ 1 11 which was also applied 
to the problem of ferroelectric-type orderings in the systems of uniaxial polar mole- 
cules [12]. In our approach, the coupling terms between various order parameters can 
be calculated allowing the discussion of secondary order parameters. One can then 
establish for which interaction potentials the ordering of the molecules’ dipole 
moments may appear as a secondary effect. 

2. Outline of the theory 
We consider the system of identical rigid non-uniaxial molecules with the inter- 

action described by the two-particle potential U,(x,, xz). The interaction energy 
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1034 K. Szumilin and J. J. Milczarek 

depends on the positions r L  of the centres of mass of the molecules and orientations 
Qgiven by eulerian angles; x, = ( r l ,  Qi). Vis the volume and f l i s  the average number 
of molecules of the system. 

The Helmholtz free energy of the system is considered in the lowest order of the 
diagram expansion method [12,13] 

__ - - + dxp(x) In p(x) - - dx dx’p(x)p(x‘)b(x, x’), (2.1) k,T k,T Fo s 2 ss - F 

where b(x, x’) is the Meyer function 

b(x,x’) = exp[-/lBU2(x,x’)] - 1 

(& = l/kB T )  and p(x) is the one-particle distribution function of the system. 
We define the distribution function f as 

and calculate the free energy AFdue to deviation 6f(x) = f(x) - fo from the isotrop- 
ic liquid state, using the equation (2.1) 

1 
4.n 2 

(2.4) 
‘s A F  = F ( f )  - F(f,) = nk, (- ldx[6f(x)]’ - dx[Sf(x)]’ + . . . 

dx dx‘6f(x)6f(x‘)b(x, x‘). 
rz2 

2(47~)~ 
_ -  

The theory of the phase transitions in the system should establish the set of the 
relevant order parameters. In our approach [I 1, 121 the crucial factor determining the 
order parameters is the interaction potential. We start with the expansion of the 
distribution function in the orthogonal function series 

6f(x) = c exp (iq - win  (Q), (2.5) 
Lm,n 

9 

where D;, (a) are Wigner’s D-functions. The coefficients u i ,  (4) describe the orienta- 
tional and translational ordering in the system and are the statistical averages 

With that assumption the free energy A F  given by equation (2.4) becomes the 
power series in terms of the expansion coefficients r&,(q). In general, the second order 
terms in ai,(q) can be written in the form 

const. (T - T,*,’(q)) lai,(q)I2. (2.7) 

Here the critical temperatures T,*,‘(q) are determined by the interaction potential 

Ek, T 
871 

T,*,l(q) = - - ldxdx’exp[iq - ( r  - r’)]D(nn(Q)Dm,( * I  SZ’)b(x, x’), (ii = f l / V ) .  

(2.8) 

The order parameters abN(q) are those &(q) for which T$(q) reaches maximum. 
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Figure 1 .  The model of interacting elongated non-uniaxial molecules with permanent dipole 
moment non-parallel to the long axis. The unit vectors n and p point in the directions 
of the long axes and dipole moments, respectively. 

3. Molecular model and interaction potentials 
The molecules constituting the system are regarded as elongated forms with 

built-in permanent dipole moments at a given angle (D to the main (long) axis of the 
molecule. Then each molecule can be represented by the set of two unit vectors 
{q, p,}, where ni is parallel to the long axis of the ith molecule and pi points in the 
direction of its dipole moment (see figure 1). 

The angle @ between those two vectors turns out to be relevant in the present 
theory. Such a model enables us to discuss the interaction of non-uniaxial molecules 
(in case of (D # 0) and uniaxial ones when (D = 0. The widely discussed case of a 
permanent dipole moment perpendicular to the molecular long axis is also included 
here. We can also make use of this model to describe the interaction of chiral 
molecules. 

Following standard theories of the orientational ordering we take the part of the 
interaction potential responsible for alignment of the long molecular axes proportional 
to P2(n, - n,) (here P, denotes the Legendre polynomial of ith order) [14-151. The 
simplest form of the dipole-dipole interaction can be described by the term propor- 
tional to P,(pl * p2). In the case when the appearance of the permanent dipole 
moment is associated with the existence of the short molecular axis (flat molecules), 
one can expect the ordering of those axes due to the interaction term proportional to 
P2(p,  p2). In general, the cross terms containing P,(p, - n2) can not be excluded on 
formal grounds, especially when chiral molecules are considered. Hence, the discussed 
potential can be written as 

a2h2 

where <b(r,2) depends on the distances between the centres of masses of the molecules. 
In the case of ferroelectric liquid crystals, being improper ferroelectrics, the 

spontaneous polarization really cannot be considered as the primary order parameter. 
This means that in the free energy AF of the system the quadratic terms in the 
polarization components Pa (a = x,y,z) are not relevant for the ferroelectric phase 
transition. Therefore, we would consider various possible forms of the interaction 
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1036 K. Szumilin and J. J. Milczarek 

potential for chiral molecules, trying to find those leading to the ordering of the dipole 
moments; also there is the secondary effect resulting from the coupling between 
primary orientational order parameters and the polarization. It is generally accepted 
that the molecular chirality is responsible for ferroelectric behaviour observed in 
liquid crystals. The chirality of the molecule is understood as a lack of any centre of 
inversion or mirror plane in the symmetry group of the molecule [3,16]. Hence by the 
chiral molecule we mean the molecule in which one can distinguish the 'up' and the 
'down', the 'front' and the 'back' or the 'left hand side' and the 'right hand side'. In 
this sense the chirality is not identical with the helicity of the molecule [ 161. The helical 
molecules are chiral, but chiral molecules must not necessarily be helical. The pos- 
tulated interaction potential will describe the interaction of the chiral molecules with 
the assumption that the interaction between left handed molecules is the same as 
between the right handed ones. 

Here we propose to describe the interaction of two chiral molecules with fixed unit 
vectors n and p in terms of the following products of these vectors: 

K"X,J,) (n, x PI) * ("/ x P,). (3.2) 

U,C"x,,x,) = Yh(r,)(P,(n, ' n/)Pl(P, - P/) - P,(n, * P,)Pl(P, ' n,)) 

This kind of interaction can be expressed in terms of the Legendre polynomials 

(3.3) 
Parity conservation requires that the function v,Ch(rl,) should be a scalar; so it does 

not distinguish between a right and left hand helix. In reality the interaction energy 
depends not only on mutual molecular orientations, but also on their postions with 
respect to the intermolecular vector rI2. In such cases, four types of potential, 
including r dependence, can be considered [6]. The first one is related to the elongated 
molecular shape [6,15] 

us2h(x1J2)= 1 Vsfi(y12)~*,(r12 * n1). (3.4) 
1 

1 = 1 , 2  

The effect of the molecular chirality is usually represented in the uniaxial mole- 
cular model by the interaction potential of the form [6,17] 

Uihr(xI, x2) = ~hr(r l , ) (n l  x n,) - rI2PI (n, * n,). (3.5) 
In this form of the interaction potential, the chirality of the moiecules is reduced 

to helicity. Here the function Thr(rl2) is a pseudoscalar quantity. One should notice 
that, as we stated before, in general the chiral molecule is not always helical. In this 
respect the biaxial molecular model seems to be more general for discussion of 
possible molecular orderings in the system. The interaction of the biaxial non- 
centrosymmetric molecules can also be described in terms of n,, p, and rI2 vectors [6]. 

4. Free energies and order parameters 
The scope of the theory presented in $1 enables us to calculate the free energy F 

of the system given the interaction potential. In the simplest case we take the mole- 
cular interaction potential in the form of 

W X 1 J , )  = V"r,)Po(nln/) + &;(rl,> Pl(P,P,) + K k , )  Pzhn,). (4.1) 
For the calculation of the interaction term in equation (2.4) in the lowest order 

approximation in flB U (when b = - flB U ) ,  the following formula is important: 

(4.2) 
m =  -I  

where Qi = {4i, Bi, xi} are the eulerian angles for the unit vectors ai (i = 1,2). 
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Interaction potentials and free energies 1037 

Now we can calculate the free energy AF of the system for the potential given by 
equation (4.1) using equations (2.4) and (2.5). Considering the angle @ between the 
molecular vectors n and p we express their orientations in the same reference system 
using properties of the Wigner D-functions. The second order terms in the expansion 
coefficients ak,(q) of the equation (2.5) can be written in the form 

AF[21 = c (T - T,*(q))l~i?l*/2 + c (T - ~,*(q))/P,B,,(Q1,q)12, (4.3) 
1=0,2,m m = - 1,0, I 

9 9 

where the critical tempertures T,*(q) (I = 0, 1 ,2) are given by Fourier transforms of 
the functions V'(r) from equation (4.1). 

Here new quantities 8, are introduced as linear combinations of aL(q) 

Those parameters describe the ordering of molecular dipole moments. In the case 
of uniaxial molecules (nllp, i.e. @ = 0) the polar ordering is described by ak,(q) 
(rn = - 1,0,1) as was found in our previous work [12]. In the case when the dipole 
moment is perpendicular to the molecular long axis (@ = 4 2 ) ,  we obtain the different 
set of the polar order parameters 

Pm(nl2,q) = (at,(q) - 4 - 1  (q))/J2. (4.5) 
The set of polar parameters given by equation (4.4) is induced by the symmetry 

of the assumed molecular interaction. The existence of the polar interaction term 
-PI (p,p,) allows us to expand the distribution function Sf in the reduced set of 
orthogonal functions 

S f ( x )  = C P,n (@, q P n ,  Q) exp(iq * r) + c akn (4) exp(iq * r>D!nn (a), 
m =  ~ 1.0, I I # l , m , n  

9 4 

(4.6) 
where the set of nine Wigner functions @,,(SZ) is reduced to three orthogonal func- 
tions gm(@, SZ) 

Note that the reduction of the set of orthogonal functions takes place also due to 
the presence of the orientational interaction term in the potential in the form 
-P,(p,p,). The full set of orientational parameters ain(q) is here reduced to five 
parameters aio(q). 

We have also calculated the second order terms in the free energy AF yielded by 
the chiral potential part given by equation (3.3). For example we found that the 
second order term containing lahi (q)1' is now introduced into AF. The assumed form 
of chirality makes the use of the polar parameters 8, impossible. Hence all parameters 
a t  should be used in the expression for leading terms in the free energy. This potential 
does not yield mixed second order terms proportional to the product ai2n2(q) 
a;,,, (- 9). Thus the chirality described in terms of such a potential is not sufficient 
to produce coupling between orientational order and polarization parameters. 

The existing theoretical description of ferroelectric liquid crytals are based on the 
interaction potential given by equation (3.5) [6,7], so we expect that application of our 
approach to systems with intermolecular potentials containing dependence on orien- 
tation of vectors TI,.  SZ, and SZl will introduce into the free energy the coupling terms 
between appropriate order parameters. 
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1038 Interaction potentials and free energies 

The Landau form of the free energy AF is obtained from the general expression 
given by equation (2.4) when the critical vectors Q are calculated as those wavevectors 
q for which the critical temperatures T,$ reach their maxima. Then all ai,(q) or &(q) 
with q # Q are neglected in the free energy AF which becomes the polynomial in 
chosen &,,,(a) and PM(Q). 

5. Conclusions 
We have outlined the method of analysing the system orderings based on the 

expansion of the one-particle distribution function in the complete set of functions 
containing full rotation (Di,,((n)) and translation group (exp (iq . r)) functions. The 
order parameters are determined from the expansion coefficients in that series. The 
explicit form of the assumed interaction potential is the crucial factor in choosing 
the relevant order parameters. 

The method was applied to the model of elongated molecules with the permanent 
dipole moment forming an arbitrary angle with the long molecular axis. The simple 
interaction potential for a system of such molecules was proposed. We have shown 
that the definition of the polar order parameters contains the dependence on that 
angle. 

The chiral part of the interaction potential for the given model of the molecules was 
postulated and its influence on the polar order parameters definition is demonstrated. 

In this work we have limited the presentation to the results obtained from the 
potentials dependent on the molecular orientations only. These potentials do not give 
coupling between the long axes ordering and the polarization. The discussion of the 
potentials containing the intermolecular vector orientation will be presented in a 
forthcoming more comprehensive paper. 

This work was supported by the Science Research Committee (Poland) under 
contract KBN No 2 0496 91 01. 
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